Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Int J Oncol ; 63(2)2023 Aug.
Article in English | MEDLINE | ID: mdl-37387446

ABSTRACT

Although expression of ribosomal protein L27 (RPL27) is upregulated in clinical colorectal cancer (CRC) tissue, to the best of our knowledge, the oncogenic role of RPL27 has not yet been defined. The present study aimed to investigate whether targeting RPL27 could alter CRC progression and determine whether RPL27 gains an extra­ribosomal function during CRC development. Human CRC cell lines HCT116 and HT29 were transfected with RPL27­specific small interfering RNA and proliferation was assessed in vitro and in vivo using proliferation assays, fluorescence­activated cell sorting (FACS) and a xenograft mouse model. Furthermore, RNA sequencing, bioinformatic analysis and western blotting were conducted to explore the underlying mechanisms responsible for RPL27 silencing­induced CRC phenotypical changes. Inhibiting RPL27 expression suppressed CRC cell proliferation and cell cycle progression and induced apoptotic cell death. Targeting RPL27 significantly inhibited growth of human CRC xenografts in nude mice. Notably, polo­like kinase 1 (PLK1), which serves an important role in mitotic cell cycle progression and stemness, was downregulated in both HCT116 and HT29 cells following RPL27 silencing. RPL27 silencing reduced the levels of PLK1 protein and G2/M­associated regulators such as phosphorylated cell division cycle 25C, CDK1 and cyclin B1. Silencing of RPL27 reduced the migration and invasion abilities and sphere­forming capacity of the parental CRC cell population. In terms of phenotypical changes in cancer stem cells (CSCs), RPL27 silencing suppressed the sphere­forming capacity of the isolated CD133+ CSC population, which was accompanied by decreased CD133 and PLK1 levels. Taken together, these findings indicated that RPL27 contributed to the promotion of CRC proliferation and stemness via PLK1 signaling and RPL27 may be a useful target in a next­generation therapeutic strategy for both primary CRC treatment and metastasis prevention.


Subject(s)
Colorectal Neoplasms , Protein Serine-Threonine Kinases , Humans , Animals , Mice , Mice, Nude , Protein Serine-Threonine Kinases/genetics , Colorectal Neoplasms/genetics , Polo-Like Kinase 1
2.
Biomaterials ; 303: 122360, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38465578

ABSTRACT

BACKGROUND & AIMS: Several types of human stem cells from embryonic (ESCs) and induced pluripotent (iPSCs) to adult tissue-specific stem cells are commonly used to generate 3D liver organoids for modeling tissue physiology and disease. We have recently established a protocol for direct conversion of primary human hepatocytes (hPHs) from healthy donor livers into bipotent progenitor cells (hCdHs). Here we extended this culture system to generate hCdH-derived liver organoids for diverse biomedical applications. METHODS: To obtain hCdHs, hPHs were cultured in reprogramming medium containing A83-01 and CHIR99021 for 7 days. Liver organoids were established from hCdHs (hCdHOs) and human liver cells (hLOs) using the same donor livers for direct comparison, as well as from hiPSCs. Organoid properties were analyzed by standard in vitro assays. Molecular changes were determined by RT-qPCR and RNA-seq. Clinical relevance was evaluated by transplantation into FRG mice, modeling of alcohol-related liver disease (ARLD), and in vitro drug-toxicity tests. RESULTS: hCdHs were clonally expanded as organoid cultures with low variability between starting hCdH lines. Similar to the hLOs, hCdHOs stably maintained stem cell phenotype based on accepted criteria. However, hCdHOs had an advantage over hLOs in terms of EpCAM expression, efficiency of organoid generation and capacity for directed hepatic differentiation as judged by molecular profiling, albumin secretion, glycogen accumulation, and CYP450 activities. Accordingly, FRG mice transplanted with hCdHOs survived longer than mice injected with hLOs. When exposed to ethanol, hCdHOs developed stronger ARLD phenotype than hLOs as evidenced by transcriptional profiling, lipid accumulation and mitochondrial dysfunction. In drug-induced injury assays in vitro, hCdHOs showed a similar or higher sensitivity response than hPHs. CONCLUSION: hCdHOs provide a novel patient-specific stem cell-based platform for regenerative medicine, toxicology testing and modeling liver diseases.


Subject(s)
Induced Pluripotent Stem Cells , Regenerative Medicine , Adult , Humans , Animals , Mice , Cells, Cultured , Liver/metabolism , Organoids , Cell Differentiation
3.
J Cancer ; 13(8): 2570-2583, 2022.
Article in English | MEDLINE | ID: mdl-35711835

ABSTRACT

Aims: Ribosomal protein L17 (RPL17), a 60S subunit component, is up-regulated in colorectal cancer (CRC). However, its oncogenic role in CRC progression remains unexplored. Thus, we aimed to investigate the effect of RPL17 targeting on CRC in vitro and in vivo and whether RPL17 gained an extra-ribosomal function during CRC development. Methods: RPL17-specific siRNAs complexed with cationic lipids were transfected to CRC cells to silence target gene expression and then real-time RT-PCR and western blotting were applied to observe the change of expression or activity of genes or proteins of interest. Cell proliferation assay, clonogenic assay and cell cycle analysis were used to determine the in vitro effects of RPL17siRNAs on CRC cell growth, and a subcutaneous xenograft assay was applied to test the effect of RPL17siRNAs on in vivo tumor growth. RNA sequencing and western blotting were used to investigate the underlying mechanisms. Sphere-forming assay, invasion assay and migration assay were used to evaluate the effects of RPL17siRNAs on CRC stemness. Results: siRNA-mediated inhibition of RPL17 expression suppressed CRC cell growth and long-term colony formation by inducing apoptotic cell death. Similarly, targeting RPL17 effectively suppressed tumor formation in a mouse xenograft model. RNA sequencing of RPL17-silenced CRC cells revealed the same directional regulation of 159 (93 down- and 66 up-regulated) genes. Notably, NIMA-related kinase 2 (NEK2), which functionally cooperates with extracellular-regulated protein kinase (ERK) and plays a pivotal role in mitotic progression and stemness maintenance, was down-regulated. RPL17 silencing reduced NEK2, ß-catenin, and p-ERK protein levels. These molecular alterations reflected the reduction in sphere-forming capacity, expression of stem cell marker genes, migration, and invasion. Reversely, RPL17 overexpression increased the ability of long-term colony formation, migration, and invasion. Conclusion: Our findings indicate that RPL17 promotes CRC proliferation and stemness via the ERK and NEK2/ß-catenin signaling axis, and targeting RPL17 could be the next molecular strategy for both primary CRC treatment and prevention of secondary tumor formation.

4.
Int J Mol Sci ; 23(5)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35269913

ABSTRACT

Attenuating the expression of immediate early (IE) proteins is essential for controlling the lytic replication of human cytomegalovirus (HCMV). The human microRNAs (hsa-miRs), miR-200b-3p and miR-200c-3p, have been identified to bind the 3'-untranslated region (3'-UTR) of the mRNA encoding IE proteins. However, whether hsa-miRs can reduce IE72 expression and HCMV viral load or exhibit a crosstalk with the host cellular signaling machinery, most importantly the NF-κB cascade, has not been evaluated. In this study, argonaute-crosslinking and immunoprecipitation-seq revealed that miR-200b-3p and miR-200c-3p bind the 3'-UTR of UL123, which is a gene that encodes IE72. The binding of these miRNAs to the 3'-UTR of UL123 was verified in transfected cells stably expressing GFP. We used miR-200b-3p/miR-200c-3p mimics to counteract the downregulation of these miRNA after acute HCMV infection. This resulted in reduced IE72/IE86 expression and HCMV VL during lytic infection. We determined that IE72/IE86 alone can inhibit the phosphorylation of RelA/p65 at the Ser536 residue and that p-Ser536 RelA/p65 binds to the major IE promoter/enhancer (MIEP). The upregulation of miR-200b-3p and miR-200c-3p resulted in the phosphorylation of RelA/p65 at Ser536 through the downregulation of IE, and the binding of the resultant p-Ser536 RelA/p65 to MIEP resulted in a decreased production of pro-inflammatory cytokines. Overall, miR-200b-3p and miR-200c-3p-together with p-Ser536 RelA/p65-can prevent lytic HCMV replication during acute and latent infection.


Subject(s)
Immediate-Early Proteins , Latent Infection , MicroRNAs , 3' Untranslated Regions , Cytomegalovirus/genetics , Humans , Immediate-Early Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Serine/genetics , Transcription Factor RelA/genetics
5.
Bioeng Transl Med ; 7(1): e10252, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35079629

ABSTRACT

Cholangiopathy is a diverse spectrum of chronic progressive bile duct disorders with limited treatment options and dismal outcomes. Scaffold- and stem cell-based tissue engineering technologies hold great promise for reconstructive surgery and tissue repair. Here, we report a combined application of 3D scaffold fabrication and reprogramming of patient-specific human hepatocytes to produce implantable artificial tissues that imitate the mechanical and biological properties of native bile ducts. The human chemically derived hepatic progenitor cells (hCdHs) were generated using two small molecules A83-01 and CHIR99021 and seeded inside the tubular scaffold engineered as a synergistic combination of two layers. The inner electrospun fibrous layer was made of nanoscale-macroscale polycaprolactone fibers acting to promote the hCdHs attachment and differentiation, while the outer microporous foam layer served to increase mechanical stability. The two layers of fiber and foam were fused robustly together thus creating coordinated mechanical flexibility to exclude any possible breaking during surgery. The gene expression profiling and histochemical assessment confirmed that hCdHs acquired the biliary epithelial phenotype and filled the entire surface of the fibrous matrix after 2 weeks of growth in the cholangiocyte differentiation medium in vitro. The fabricated construct replaced the macroscopic part of the common bile duct (CBD) and re-stored the bile flow in a rabbit model of acute CBD injury. Animals that received the acellular scaffolds did not survive after the replacement surgery. Thus, the artificial bile duct constructs populated with patient-specific hepatic progenitor cells could provide a scalable and compatible platform for treating bile duct diseases.

6.
Cell Stem Cell ; 28(9): 1614-1624.e5, 2021 09 02.
Article in English | MEDLINE | ID: mdl-33951479

ABSTRACT

DNA base editors and prime editing technology enable therapeutic in situ correction of disease-causing alleles. These techniques could have broad applications for ex vivo editing of cells prior to transplantation in a range of diseases, but it is critical that the target population is efficiently modified and engrafts into the host. Chemically derived hepatic progenitors (CdHs) are a multipotent population capable of robust engraftment and hepatocyte differentiation. Here we reprogrammed hepatocytes from a mouse model of hereditary tyrosinemia type 1 (HT1) into expandable CdHs and successfully corrected the disease-causing mutation using both adenine base editors (ABEs) and prime editors (PEs). ABE- and PE-corrected CdHs repopulated the liver with fumarylacetoacetate hydrolase-positive cells and dramatically increased survival of mutant HT1 mice. These results demonstrate the feasibility of precise gene editing in transplantable cell populations for potential treatment of genetic liver disease.


Subject(s)
Adenine , Liver Diseases , Adenine/pharmacology , Animals , Gene Editing , Hepatocytes , Liver Diseases/therapy , Mice
7.
Cancers (Basel) ; 13(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801424

ABSTRACT

Big data analysis has revealed the upregulation of cell division cycle associated 8 (CDCA8) in human hepatocellular carcinoma (HCC) and its poorer survival outcome. However, the functions of CDCA8 during HCC development remain unknown. Here, we demonstrate in vitro that CDCA8 silencing inhibits HCC cell growth and long-term colony formation and migration through the accumulation of the G2/M phase cell population. Conversely, CDCA8 overexpression increases the ability to undergo long-term colony formation and migration. RNA sequencing and bioinformatic analysis revealed that CDCA8 knockdown led to the same directional regulation in 50 genes (25 down- and 25 upregulated). It was affirmed based on protein levels that CDCA8 silencing downregulates the levels of cyclin B1 and p-cdc2 and explains how it could induce G2/M arrest. The same condition increased the protein levels of tumor-suppressive ATF3 and GADD34 and inactivated AKT/ß-catenin signaling, which plays an important role in cell growth and stemness, reflecting a reduction in sphere-forming capacity. Importantly, it was demonstrated that the extent of CDCA8 expression is much greater in CD133+ cancer stem cells than in CD133- cancer cells, and that CDCA8 knockdown decreases levels of CD133, p-Akt and ß-catenin and increases levels of ATF3 and GADD34 in the CD133+ cancer stem cell (CSC) population. These molecular changes led to the inhibition of cell growth and sphere formation in the CD133+ cell population. Targeting CDCA8 also effectively suppressed tumor growth in a murine xenograft model, showing consistent molecular alterations in tumors injected with CDCA8siRNA. Taken together, these findings indicate that silencing CDCA8 suppresses HCC growth and stemness via restoring the ATF3 tumor suppressor and inactivating oncogenic AKT/ß-catenin signaling, and that targeting CDCA8 may be the next molecular strategy for both primary HCC treatment and the prevention of metastasis or recurrence.

8.
Am J Hum Genet ; 106(1): 112-120, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31883642

ABSTRACT

Whole-genome sequencing (WGS) can improve assessment of low-frequency and rare variants, particularly in non-European populations that have been underrepresented in existing genomic studies. The genetic determinants of C-reactive protein (CRP), a biomarker of chronic inflammation, have been extensively studied, with existing genome-wide association studies (GWASs) conducted in >200,000 individuals of European ancestry. In order to discover novel loci associated with CRP levels, we examined a multi-ancestry population (n = 23,279) with WGS (∼38× coverage) from the Trans-Omics for Precision Medicine (TOPMed) program. We found evidence for eight distinct associations at the CRP locus, including two variants that have not been identified previously (rs11265259 and rs181704186), both of which are non-coding and more common in individuals of African ancestry (∼10% and ∼1% minor allele frequency, respectively, and rare or monomorphic in 1000 Genomes populations of East Asian, South Asian, and European ancestry). We show that the minor (G) allele of rs181704186 is associated with lower CRP levels and decreased transcriptional activity and protein binding in vitro, providing a plausible molecular mechanism for this African ancestry-specific signal. The individuals homozygous for rs181704186-G have a mean CRP level of 0.23 mg/L, in contrast to individuals heterozygous for rs181704186 with mean CRP of 2.97 mg/L and major allele homozygotes with mean CRP of 4.11 mg/L. This study demonstrates the utility of WGS in multi-ethnic populations to drive discovery of complex trait associations of large effect and to identify functional alleles in noncoding regulatory regions.


Subject(s)
Asian People/genetics , Black People/genetics , C-Reactive Protein/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , White People/genetics , Whole Genome Sequencing/methods , Cohort Studies , Gene Frequency , Genome-Wide Association Study , Humans , Linkage Disequilibrium
10.
J Hepatol ; 70(1): 97-107, 2019 01.
Article in English | MEDLINE | ID: mdl-30240598

ABSTRACT

BACKGROUND & AIMS: Currently, much effort is directed towards the development of new cell sources for clinical therapy using cell fate conversion by small molecules. Direct lineage reprogramming to a progenitor state has been reported in terminally differentiated rodent hepatocytes, yet remains a challenge in human hepatocytes. METHODS: Human hepatocytes were isolated from healthy and diseased donor livers and reprogrammed into progenitor cells by 2 small molecules, A83-01 and CHIR99021 (AC), in the presence of EGF and HGF. The stemness properties of human chemically derived hepatic progenitors (hCdHs) were tested by standard in vitro and in vivo assays and transcriptome profiling. RESULTS: We developed a robust culture system for generating hCdHs with therapeutic potential. The use of HGF proved to be an essential determinant of the fate conversion process. Based on functional evidence, activation of the HGF/MET signal transduction system collaborated with A83-01 and CHIR99021 to allow a rapid expansion of progenitor cells through the activation of the ERK pathway. hCdHs expressed hepatic progenitor markers and could self-renew for at least 10 passages while retaining a normal karyotype and potential to differentiate into functional hepatocytes and biliary epithelial cells in vitro. Gene expression profiling using RNAseq confirmed the transcriptional reprogramming of hCdHs towards a progenitor state and the suppression of mature hepatocyte transcripts. Upon intrasplenic transplantation in several models of therapeutic liver repopulation, hCdHs effectively repopulated the damaged parenchyma. CONCLUSION: Our study is the first report of successful reprogramming of human hepatocytes to a population of proliferating bipotent cells with regenerative potential. hCdHs may provide a novel tool that permits expansion and genetic manipulation of patient-specific progenitors to study regeneration and the repair of diseased livers. LAY SUMMARY: Human primary hepatocytes were reprogrammed towards hepatic progenitor cells by a combined treatment with 2 small molecules, A83-01 and CHIR99021, and HGF. Chemically derived hepatic progenitors exhibited a high proliferation potential and the ability to differentiate into hepatocytes and biliary epithelial cells both in vitro and in vivo. This approach enables the generation of patient-specific hepatic progenitors and provides a platform for personal and stem cell-based regenerative medicine.


Subject(s)
Hepatocytes/cytology , Liver Regeneration , Liver/cytology , Stem Cells/cytology , Adult , Aged , Aged, 80 and over , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Female , Glycogen Synthase Kinase 3 , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/drug effects , Liver/metabolism , Male , Mice , Middle Aged , Models, Animal , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , Stem Cells/drug effects , Stem Cells/metabolism , Thiosemicarbazones/pharmacology
11.
J Cell Physiol ; 234(5): 7213-7223, 2019 05.
Article in English | MEDLINE | ID: mdl-30239004

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of histopathological changes ranging from non-inflammatory intracellular fat deposition to non-alcoholic steatohepatitis (NASH), which may progress into hepatic fibrosis, cirrhosis, or hepatocellular carcinoma. Recent data suggest that impaired hepatic cholesterol homeostasis and its accumulation are relevant to the pathogenesis of NAFLD/NASH. Despite a vital physiological function of cholesterol, mitochondrial dysfunction is an important consequence of dietary-induced hypercholesterolemia and was, subsequently, linked to many pathophysiological conditions. The aim in the current study was to evaluate the morphological and molecular changes of cholesterol overload in mouse liver and particularly, in mitochondria, induced by a high-cholesterol (HC) diet for one month. Histopathological studies revealed microvesicular hepatic steatosis and significantly elevated levels of liver cholesterol and triglycerides leading to impaired liver synthesis. Further, high levels of oxidative stress could be determined in liver tissue as well as primary hepatocyte culture. Transcriptomic changes induced by the HC diet involved disruption in key pathways related to cell death and oxidative stress as well as upregulation of genes related to glutathione homeostasis. Impaired liver function could be associated with a decrease in mitochondrial membrane potential and ATP content and significant alterations in mitochondrial dynamics. We demonstrate that cholesterol overload in the liver leads to mitochondrial changes which may render damaged hepatocytes proliferative and resistant to cell death whereby perpetuating liver damage.


Subject(s)
Apoptosis , Cholesterol, Dietary , Diet, High-Fat , Hepatocytes/pathology , Liver/pathology , Mitochondria, Liver/pathology , Mitochondrial Dynamics , Non-alcoholic Fatty Liver Disease/pathology , Animals , Apoptosis/genetics , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Gene Expression Regulation , Hepatocytes/metabolism , Liver/metabolism , Male , Mice, Inbred C57BL , Mitochondria, Liver/metabolism , Mitochondrial Dynamics/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress , Time Factors , Transcriptome
12.
Tissue Eng Regen Med ; 14(5): 579-586, 2017 Oct.
Article in English | MEDLINE | ID: mdl-30603511

ABSTRACT

Target cells differentiation techniques from stem cells are developed rapidly. Recently, direct conversion techniques are introduced in various categories. Unlike pluripotent stem cells, this technique enables direct differentiation into the other cell types such as neurons, cardiomyocytes, insulin-producing cells, and hepatocytes without going through the pluripotent stage. However, the function of these converted cells reserve an immature phenotype. Therefore, we modified the culture conditions of mouse direct converted hepatocytes (miHeps) to mature fetal characteristics, such as higher AFP and lower albumin (ALB) expression than primary hepatocytes. First, we generate miHeps from mouse embryonic fibroblasts (MEFs) with two transcription factors HNF4α and Foxa3. These cells indicate typical epithelial morphology and express hepatic proteins. To mature hepatic function, DMSO is treated during culture time for more than 7 days. After maturation, miHeps showed features of maturation such as exhibiting typical hepatocyte-like morphology, increased up-regulated ALB and CYP enzyme gene expression, down-regulated AFP expressions, and acquired hepatic function over time. Thus, our data provides a simple method to mature direct converted hepatocytes functionally and these cells enable them to move closer to generating functional hepatocytes.

13.
Sci Rep ; 6: 36956, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27841362

ABSTRACT

To investigate the expression of programmed death-ligand 1 (PD-L1) and immune checkpoints and their prognostic value for resected head and neck squamous cell cancer (HNSCC). PD-L1 expression on tumor cells (TC) and tumor-infiltrating immune cells (IC), abundance of tumor-infiltrating lymphocytes (TILs), and expression of the immune checkpoints were investigated in 402 HNSCC patients. PD-L1 expression on TC and IC was categorized into four groups according to the percentage of PD-L1-positive cells. PD-L1 positivity was defined as ≥5% of cells based on immunohistochemistry. High PD-L1 expression on IC, but not TC, was an independent favorable prognostic factor for RFS and OS adjusted for age, gender, smoking, stage, and HPV. High frequencies of CD3+ or CD8+ TILs, Foxp3+ Tregs, and PD-1+ TILs were strongly associated with favorable prognosis. PD-L1 was exclusively expressed on either TC or IC. Transcriptome analysis demonstrated that IC3 expressed higher levels of the effector T cell markers than TC3, suggesting that PD-L1 expression is regulated via an adaptive IFNγ-mediated mechanism. High PD-L1 expression on IC, but not TC, and high abundance of PD-1+ T cells and Foxp3+ Tregs are favorable prognostic factors for resected HNSCC. This study highlights the importance of comprehensive assessment of both TC and IC.


Subject(s)
B7-H1 Antigen/metabolism , Carcinoma, Squamous Cell/metabolism , Head and Neck Neoplasms/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Adult , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Female , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Humans , Male , Middle Aged , Neoplasm Staging , Prognosis , Survival Analysis , Young Adult
14.
Biochem Biophys Res Commun ; 478(4): 1674-81, 2016 09 30.
Article in English | MEDLINE | ID: mdl-27592554

ABSTRACT

Ornithine decarboxylase 1 (ODC1), a metabolic enzyme critically involved in the polyamine biosynthesis, is commonly upregulated in hepatocellular carcinoma (HCC). Despite its altered expression in human HCC tissues, the molecular mechanism by which ODC1 alters the course of HCC progression and functions in HCC cell survival is unknown. Here we identified that silencing of ODC1 expression with small interfering (si) RNA causes inhibition of HCC cell growth through blockade of cell cycle progression and induction of apoptosis. Next, to obtain insights into the molecular changes in response to ODC1 knockdown, global changes in gene expression were examined using RNA sequencing. It revealed that 119 genes show same directional regulation (76 up- and 43 down-regulated) in both Huh1 and Huh7 cells and were considered as a common ODC1 knockdown signature. Particularly, we found through a network analysis that KLF2, which is known to inhibit PPARγ expression and adipogenesis, was commonly up-regulated. Subsequent Western blotting affirmed that the downregulation of ODC1 was accompanied by a decrease in the levels of PPARγ as well as of PARP-1, cyclin E1 and pro-caspase 9 delaying cell cycle progression and accelerating apoptotic signaling. Following the down-regulation of PPARγ expression, ODC1 silencing resulted in a strong inhibition in the expression of important regulators of glucose transport and lipid biogenesis, and caused a marked decrease in lipid droplet accumulation. In addition, ODC1 silencing significantly inhibited the growth of human HCC xenografts in nude mice. These findings indicate that the function of ODC1 is correlated with HCC lipogenesis and suggest that targeting ODC1 could be an attractive option for molecular therapy of HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell Proliferation/genetics , Lipid Metabolism/genetics , Liver Neoplasms/genetics , Ornithine Decarboxylase/genetics , RNA Interference , Animals , Apoptosis/genetics , Blotting, Western , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/pathology , Caspase 9/genetics , Caspase 9/metabolism , Cell Cycle/genetics , Cell Line, Tumor , Cyclin E/genetics , Cyclin E/metabolism , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Liver Neoplasms/enzymology , Liver Neoplasms/pathology , Male , Mice, Inbred BALB C , Mice, Nude , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Ornithine Decarboxylase/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , RNAi Therapeutics/methods , Reverse Transcriptase Polymerase Chain Reaction , Xenograft Model Antitumor Assays/methods
16.
Int J Oncol ; 49(5): 1953-1962, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27633352

ABSTRACT

Ribosomal protein L9 (RPL9), a component of the 60S subunit for protein synthesis, is upregulated in human colorectal cancer. In the present study, we investigated whether RPL9 gained extraribosomal function during tumorigenesis and whether targeting of RPL9 with small interfering (si) RNA could alter the course of colorectal cancer progression. Our results showed that siRNA knockdown of RPL9 suppresses colorectal cancer (CRC) cell growth and long-term colony formation through an increase in sub-G1 cell population and a strong induction of apoptotic cell death. To obtain insights into the molecular changes in response to RPL9 knockdown, global changes in gene expression were examined using RNA sequencing. It revealed that RPL9-specific knockdown led to dysregulation of 918 genes in HCT116 and 3178 genes in HT29 cells. Among these, 296 genes showed same directional regulation (128 upregulated and 168 downregulated genes) and were considered as a common RPL9 knockdown signature. Particularly, we found through a network analysis that Id-1, which is functionally associated with activation of NF-κB and cell survival, was commonly downregulated. Subsequent western blot analysis affirmed that RPL9 silencing induced the decrease in the levels of Id-1 and phosphorylated IκBα in both HCT116 and HT29 cells. Also, the same condition decreased the levels of PARP-1 and pro-caspase-3, accelerating apoptosis. Furthermore, inhibition of RPL9 expression significantly suppressed the growth of human CRC xenografts in nude mice. These findings indicate that the function of RPL9 is correlated with Id-1/NF-κB signaling axis and suggest that targeting RPL9 could be an attractive option for molecular therapy of colorectal cancer.


Subject(s)
Cell Proliferation , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Inhibitor of Differentiation Protein 1/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Ribosomal Proteins/antagonists & inhibitors , Animals , Apoptosis , Blotting, Western , Cell Cycle , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Humans , Immunoenzyme Techniques , Inhibitor of Differentiation Protein 1/genetics , Inhibitor of Differentiation Protein 1/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , NF-kappa B/genetics , NF-kappa B/metabolism , Phosphorylation , RNA, Messenger/genetics , RNA, Small Interfering , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
17.
J Neurosci ; 36(33): 8641-52, 2016 08 17.
Article in English | MEDLINE | ID: mdl-27535911

ABSTRACT

UNLABELLED: MicroRNAs (miRNAs) are small, noncoding RNAs that posttranscriptionally regulate gene expression in many tissues. Although a number of brain-enriched miRNAs have been identified, only a few specific miRNAs have been revealed as critical regulators of synaptic plasticity, learning, and memory. miR-9-5p/3p are brain-enriched miRNAs known to regulate development and their changes have been implicated in several neurological disorders, yet their role in mature neurons in mice is largely unknown. Here, we report that inhibition of miR-9-3p, but not miR-9-5p, impaired hippocampal long-term potentiation (LTP) without affecting basal synaptic transmission. Moreover, inhibition of miR-9-3p in the hippocampus resulted in learning and memory deficits. Furthermore, miR-9-3p inhibition increased the expression of the LTP-related genes Dmd and SAP97, the expression levels of which are negatively correlated with LTP. These results suggest that miR-9-3p-mediated gene regulation plays important roles in synaptic plasticity and hippocampus-dependent memory. SIGNIFICANCE STATEMENT: Despite the abundant expression of the brain-specific microRNA miR-9-5p/3p in both proliferating and postmitotic neurons, most functional studies have focused on their role in neuronal development. Here, we examined the role of miR-9-5p/3p in adult brain and found that miR-9-3p, but not miR-9-5p, has a critical role in hippocampal synaptic plasticity and memory. Moreover, we identified in vivo binding targets of miR-9-3p that are involved in the regulation of long-term potentiation. Our study provides the very first evidence for the critical role of miR-9-3p in synaptic plasticity and memory in the adult mouse.


Subject(s)
Hippocampus/metabolism , MicroRNAs/metabolism , Neuronal Plasticity/physiology , Recognition, Psychology/physiology , Animals , Conditioning, Psychological/physiology , Discs Large Homolog 1 Protein , Dystrophin/metabolism , Exploratory Behavior/physiology , Fear/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Guanylate Kinases/metabolism , HEK293 Cells , Hippocampus/cytology , Humans , Male , Maze Learning/drug effects , Maze Learning/physiology , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Neuronal Plasticity/drug effects , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Recognition, Psychology/drug effects , Synapsins/genetics , Synapsins/metabolism , Transduction, Genetic
18.
Nat Cell Biol ; 18(9): 930-40, 2016 09.
Article in English | MEDLINE | ID: mdl-27548913

ABSTRACT

Quiescent satellite cells, known as adult muscle stem cells, possess a remarkable ability to regenerate skeletal muscle following injury throughout life. Although they mainly originate from multipotent stem/progenitor cells of the somite, the mechanism underlying the establishment of quiescent satellite cell populations is unknown. Here, we show that sex hormones induce Mind bomb 1 (Mib1) expression in myofibres at puberty, which activates Notch signalling in cycling juvenile satellite cells and causes them to be converted into adult quiescent satellite cells. Myofibres lacking Mib1 fail to send Notch signals to juvenile satellite cells, leading to impaired cell cycle exit and depletion. Our findings reveal that the hypothalamic-pituitary-gonadal axis drives Mib1 expression in the myofibre niche. Moreover, the same axis regulates the re-establishment of quiescent satellite cell populations following injury. Our data show that sex hormones establish adult quiescent satellite cell populations by regulating the myofibre niche at puberty and re-establish them during regeneration.


Subject(s)
Cell Differentiation/drug effects , Cell Proliferation/drug effects , Gonadal Steroid Hormones/pharmacology , Muscle Fibers, Skeletal/cytology , Regeneration/physiology , Adult Stem Cells/drug effects , Adult Stem Cells/metabolism , Animals , Cell Cycle/drug effects , Cell Cycle/physiology , Cell Differentiation/physiology , Cell Separation/methods , Cells, Cultured , Gonadal Steroid Hormones/metabolism , Mice, Transgenic , Muscle, Skeletal/cytology , Regeneration/drug effects , Ubiquitin-Protein Ligases/genetics
19.
Toxicology ; 361-362: 39-48, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27394961

ABSTRACT

Recent studies confirmed a critical importance of c-Met signaling for liver regeneration by modulating redox balance. Here we used liver-specific conditional knockout mice (MetKO) and a nutritional model of hepatic steatosis to address the role of c-Met in cholesterol-mediated liver toxicity. Liver injury was assessed by histopathology and plasma enzymes levels. Global transcriptomic changes were examined by gene expression microarray, and key molecules involved in liver damage and lipid homeostasis were evaluated by Western blotting. Loss of c-Met signaling amplified the extent of liver injury in MetKO mice fed with high-cholesterol diet for 30days as evidenced by upregulation of liver enzymes and increased synthesis of total bile acids, aggravated inflammatory response and enhanced intrahepatic lipid deposition. Global transcriptomic changes confirmed the enrichment of networks involved in steatosis and cholestasis. In addition, signaling pathways related to glutathione and lipid metabolism, oxidative stress and mitochondria dysfunction were significantly affected by the loss of c-Met function. Mechanistically, exacerbation of oxidative stress in MetKO livers was corroborated by increased lipid and protein oxidation. Western blot analysis further revealed suppression of Erk, NF-kB and Nrf2 survival pathways and downstream target genes (e.g. cyclin D1, SOD1, gamma-GCS), as well as up-regulation of proapoptotic signaling (e.g. p53, caspase 3). Consistent with the observed steatotic and cholestatic phenotype, nuclear receptors RAR, RXR showed increased activation while expression levels of CAR, FXR and PPAR-alpha were decreased in MetKO. Collectively, our data provide evidence for the critical involvement of c-Met signaling in cholesterol and bile acids toxicity.


Subject(s)
Cholestasis, Intrahepatic/chemically induced , Cholestasis, Intrahepatic/metabolism , Hepatocytes/drug effects , Lipids/toxicity , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Animals , Cell Survival/drug effects , Cell Survival/genetics , Cholesterol, Dietary/toxicity , Glutathione/metabolism , Lipid Metabolism/drug effects , Lipid Peroxidation , Liver Function Tests , Mice , Mice, Knockout , Signal Transduction
20.
Int J Hyperthermia ; 32(6): 648-56, 2016 09.
Article in English | MEDLINE | ID: mdl-27269053

ABSTRACT

PURPOSE: Modulated electro-hyperthermia (mEHT) has been shown to be effective against various types of human tumours, including hepatocellular carcinoma (HCC). Here we aimed to investigate the molecular mechanism underlying the cytotoxic effects of mEHT to HCC cells. MATERIALS AND METHODS: Human liver cancer cell lines, Huh7 and HepG2, were treated with mEHT (42 °C/60 min) three times at 2-day intervals. Growth inhibition and apoptotic induction were evaluated using MTS, microscopic analysis, a clonogenic assay, annexin V/PI staining and a ccK18 ELISA. Global changes in gene expression were examined using RNA sequencing to obtain insights into molecular changes in response to mEHT. For in vivo evaluation of mEHT we used HepG2 HCC xenografts grown in nude mice. RESULTS: mEHT suppressed HCC cell proliferation and long-term colony formation through induction of apoptosis. The growth inhibitory effects are induced through a subset of molecular changes. Notably the expression level of septin 4 (SEPT4) (involved in pro-apoptotic activity and growth suppression) was up-regulated, whereas a key regulator of invasiveness G-Protein coupled receptor 64 (GPR64) was repressed. Subsequent Western blotting confirmed that the common increase in tumour suppressor SEPT4 in both Huh7 and HepG2 cells is accompanied by the restoration of cyclin-dependent kinase (CDK) inhibitor p21 and decrease in pro-caspase 7 and pro-caspase 3, thereby accelerating apoptotic signalling in HCC cells. Additionally, mEHT significantly inhibited the growth of human HCC xenografts in nude mice. CONCLUSIONS: These findings suggest that apoptotic cell death induced by mEHT is mediated by the up-regulation of tumour suppressor SEPT4 in human HCC cells.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Hyperthermia, Induced , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Septins/metabolism , Animals , Apoptosis , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Humans , Liver Neoplasms/pathology , Mice, Nude , Tumor Burden , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...